Skip to main content

Visit this link for 1 : 1 LIVE Classes.

RE: Message sent from website

This letter and its reply may be of general interest. The reply is given in italics.

-----Original Message-----
From: Tamaghna Kumar Banerjee
Sent: Saturday, February 19, 2005 1:59 AM
Subject: Message sent from website

query: I am a 12pass student & about to write the IITJEE 2005.I want to know ,how can I join others in cracking new problems here (I am a new user of 123 & I see all the problems already solved).

The most recent problem is not solved. You can type your solution in .doc file and email us at mail@123iitjee.com along with your name, class, school/college and place.

I also want to know whether the pattern of IITJEE 05 mains (10 ques. of 2 marks & 10 of 4 marks) going to change or not.

JEE is known for surprises, hence nothing can be said for sure. Be prepared for anything.

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)