Skip to main content

Visit this link for 1 : 1 LIVE Classes.

LMVT Application: $\sqrt {n + 1} - \sqrt n < \frac{1}{{2N}}$

Problem

Prove that $\sqrt {n + 1}  - \sqrt n <  \frac{1}{{2N}}$ if $n > N^2$, n being a natural number.

Solution

${\rm{Let }}f(x) = \sqrt x ,x \in [n,n + 1]$

Since n is a natural number, clearly f(x) satisfies the continuity and differentiability requirements of LMVT.

$f'(c) = \frac{1}{{2\sqrt c }} = \frac{{f(n + 1) - f(n)}}{{(n + 1) - n}},n < c < n + 1$

$\frac{1}{{2\sqrt c }} = f(n + 1) - f(n) = \sqrt {n + 1}  - \sqrt n .........(*)$

Since, $n < c < n + 1$

$\sqrt n  < \sqrt c  < \sqrt {n + 1}$

$\frac{1}{{\sqrt n }} > \frac{1}{{\sqrt c }} > \frac{1}{{\sqrt {n + 1} }}$..........(#)

Given, $n > {N^2}$

$\sqrt n  > N$

$\frac{1}{{\sqrt n }} < \frac{1}{N},\frac{1}{{\sqrt n }} > \frac{1}{{\sqrt c }}$      from (#)

Hence, $\frac{1}{N} > \frac{1}{{\sqrt c }}$

$\frac{1}{{2N}} > \frac{1}{{2\sqrt c }}$ 

$\frac{1}{{2N}} > \sqrt {n + 1}  - \sqrt n$      from (*)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)