Problem
Prove that $\sqrt {n + 1} - \sqrt n < \frac{1}{{2N}}$ if $n > N^2$, n being a natural number.
Solution
${\rm{Let }}f(x) = \sqrt x ,x \in [n,n + 1]$
Since n is a natural number, clearly f(x) satisfies the continuity and differentiability requirements of LMVT.
$f'(c) = \frac{1}{{2\sqrt c }} = \frac{{f(n + 1) - f(n)}}{{(n + 1) - n}},n < c < n + 1$
$\frac{1}{{2\sqrt c }} = f(n + 1) - f(n) = \sqrt {n + 1} - \sqrt n .........(*)$
Since, $n < c < n + 1$
$\sqrt n < \sqrt c < \sqrt {n + 1}$
$\frac{1}{{\sqrt n }} > \frac{1}{{\sqrt c }} > \frac{1}{{\sqrt {n + 1} }}$..........(#)
Given, $n > {N^2}$
$\sqrt n > N$
$\frac{1}{{\sqrt n }} < \frac{1}{N},\frac{1}{{\sqrt n }} > \frac{1}{{\sqrt c }}$ from (#)
Hence, $\frac{1}{N} > \frac{1}{{\sqrt c }}$
$\frac{1}{{2N}} > \frac{1}{{2\sqrt c }}$
$\frac{1}{{2N}} > \sqrt {n + 1} - \sqrt n$ from (*)