Skip to main content

Visit this link for 1 : 1 LIVE Classes.

CBSE 2012 Mathematics Definite Integration Problem’s Solution

Evaluate:

$\int\limits_{ - 1}^2 {\left| {{x^3} - x} \right|dx}$

CBSE 2012

Solution

$\int\limits_{ - 1}^2 {\left| {{x^3} - x} \right|dx}  = I = \int\limits_{ - 1}^1 {\left| {{x^3} - x} \right|dx}  + \int\limits_1^2 {\left| {{x^3} - x} \right|dx}$

Since ${\left| {{x^3} - x} \right|}$ is an even function,

$\int\limits_{ - 1}^1 {\left| {{x^3} - x} \right|dx}  = 2\int\limits_0^1 {\left| {{x^3} - x} \right|dx}$

$I = 2\int\limits_0^1 {\left| {{x^3} - x} \right|dx}  + \int\limits_1^2 {\left| {{x^3} - x} \right|dx}$

Since  $x > {x^3}$ when x lies between 0 to 1 and ${x^3} > x$ when x lies between 1 and 2,

$I = 2\int\limits_0^1 {\left( {x - {x^3}} \right)dx}  + \int\limits_1^2 {\left( {{x^3} - x} \right)dx}$

$= 2\left. {\left( {\frac{{{x^2}}}{2} - \frac{{{x^4}}}{4}} \right)} \right|_0^1 + \left. {\left( {\frac{{{x^4}}}{4} - \frac{{{x^2}}}{2}} \right)} \right|_1^2$

$= 2\left[ {\left( {\frac{1}{2} - \frac{1}{4}} \right) - 0} \right] + \left[ {\left( {\frac{{16}}{4} - \frac{4}{2}} \right) - \left( {\frac{1}{4} - \frac{1}{2}} \right)} \right]$

$= 3\left( {\frac{1}{2} - \frac{1}{4}} \right) + (4 - 2)$

$= \frac{3}{4} + 2 = \frac{{11}}{4}$

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)