Skip to main content

Visit this link for 1 : 1 LIVE Classes.

Projectile Motion Problem & Solution

Problem

A student sits atop a platform a distance h above the ground. He throws a large object horizontally with a speed u. A wind blowing parallel to the ground gives the object a constant horizontal acceleration with magnitude a. This results in the object reaching the ground directly under the student. Determine the height h in terms of u, a and g. Ignore the effect of air resistance on the vertical motion.

Solution

Image(2)

For vertical motion,

$h = \frac{1}{2}g{t^2}$............*

For horizontal motion,

$0 = ut + \frac{1}{2}( - a){t^2}$

or $0 = u - \frac{1}{2}at$..............#

Putting $t = \sqrt {\frac{{2h}}{g}}$ from * in #,

$0 = u - \frac{1}{2}a\sqrt {\frac{{2h}}{g}}$

or $h = \frac{{2{u^2}g}}{{{a^2}}}$.

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)