Skip to main content

Updates ...

Visit the website 123iitjee.manishverma.site for latest posts, courses, admission & more.

For guest/sponsored article(s), please check this link.

JEE 2012 Problem & Solution

image

Solution

We have, \left( {P + \frac{{{n^2}a}}{{{V^2}}}} \right)\left( {V - nb} \right) = nRT

As per the question, \left( {P + \frac{a}{{{V^2}}}} \right)V = RT

 \Rightarrow PV + \frac{a}{V} = RT

 \Rightarrow PV =  - a\frac{1}{V} + RT

Since PV is the y-axis and 1/V is the x-axis, slope=-a.

Slope = \frac{{20.1 - 21.6}}{{3.0 - 2.0}} =  - 1.5 =  - a

Thus,a = 1.5.

(C)

Popular posts from this blog

$f(x)=x^6+2x^4+x^3+2x+3 $

$\mathop {\lim }\limits_{x \to 1} \frac{{{x^n}f(1) - f(x)}}{{x - 1}} = 44$

$n=?$

Let $f(x)=x^6+2x^4+x^3+2x+3,x \in R $. Then the natural number n for which $\mathop {\lim }\limits_{x \to 1} \frac{{{x^n}f(1) - f(x)}}{{x - 1}} = 44$ is _ _ _ _ . Solution Since the limit has $\left[ {\frac{0}{0}} \right]$ form, L.H. Rule is applicable. Thus, $\mathop {\lim }\limits_{x \to 1} n{x^{n - 1}}f(1) - f'(x) = 44$ $\therefore nf(1) - f'(1) = 44$ $\therefore n.9 - ({6.1^5} + {8.1^3} + {3.1^2} + 2.1) = 44$ $ \Rightarrow 9n - 19 = 44$ $\Rightarrow n=7$