Skip to main content

Updates ...

Visit the website 123iitjee.manishverma.site for latest posts, courses, admission & more.

For guest/sponsored article(s), please check this link.

JEE 2012 Math: ${\lim _{a \to {0^ + }}}\alpha (a)$ & ${\lim _{a \to {0^ + }}}\beta (a)$

Let $\alpha (a)$ and $\beta (a)$ be the roots of the equation

$\left( {\sqrt[3]{{1 + a}} - 1} \right){x^2} + \left( {\sqrt {1 + a}  - 1} \right)x + \left( {\sqrt[6]{{1 + a}} - 1} \right) = 0$ where a>-1.

Then ${\lim _{a \to {0^ + }}}\alpha (a)$ and ${\lim _{a \to {0^ + }}}\beta (a)$ are

(A) $-\frac {5}{2}$ and 1
(B) $-\frac {1}{2}$ and -1
(C) $-\frac {7}{2}$ and 2
(D) $-\frac {9}{2}$ and 3

image

Solution

Looking at the options and noticing that while the sum of the limits is same the product of the limits is different and hence the following quick method can be employed:

Consider,

{\lim _{a \to {0^ + }}}\alpha (a).{\lim _{a \to {0^ + }}}\beta (a)

= {\lim _{a \to {0^ + }}}\alpha (a).\beta (a) assuming both limits exist

= {\lim _{a \to {0^ + }}}\frac{{\sqrt[6]{{1 + a}} - 1}}{{\sqrt[3]{{1 + a}} - 1}}

= {\lim _{a \to {0^ + }}}\frac{{\sqrt[6]{{1 + a}} - 1}}{{\sqrt[3]{{1 + a}} - 1}} \times \frac{{\sqrt[6]{{1 + a}} + 1}}{{\sqrt[6]{{1 + a}} + 1}}

= {\lim _{a \to {0^ + }}}\frac{{\sqrt[3]{{1 + a}} - 1}}{{\sqrt[3]{{1 + a}} - 1}} \times \frac{1}{{\sqrt[6]{{1 + a}} + 1}}

= \frac{1}{2}

Hence, (B).

Popular posts from this blog