Skip to main content

Visit this link for 1 : 1 LIVE Classes.

A 5.25 m by 3.78 m rectangular courtyard ...

A 5.25 m by 3.78 m rectangular courtyard is to be paved with square tiles of the same size such that only whole tiles are used. What is the largest possible size of such a tile? Also, find the number of tiles required.

Solution


Let a be the edge of the square tile.

Then, $a\times m=5.25$ and $a\times n=3.78$

Dividing, $\frac {m}{n}=\frac {525}{378}$

= $\frac {175}{126}$ [dividing by 3]

= $\frac {25}{18}$ [dividing by 7]

Smallest value of m = 25 and smallest value of n = 18 (for the square tile to be of largest size, m & n should be the least)

Number of tiles = m.n = 25 x 18 = 450

PS: The solution in file format is embedded below.

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)