Skip to main content

Visit this link for 1 : 1 LIVE Classes.

In the cubic crystal of CsCl $(d = 3.97\,g/c{m^3})$ ...

In the cubic crystal of CsCl (d=3.97 g/cm3) the eight corners are occupied by Cl- with a Cs+ at the centre and vice-versa. Assuming anion-anion contact, calculate the distance between the neighbouring Cs+ and Cl- ions. What is the radius ratio of the two ions? [At. Wt. of Cs = 132.91 and that of Cl = 35.45]

Solution

${\rm{Density}} = \frac{{{\rm{n}} \times {\rm{molecular\,weight}}}}{{{{\rm{a}}^{\rm{3}}} \times {{\rm{N}}_{\rm{a}}}}}$
$ \Rightarrow 3.97 = \frac{{1 \times 168.36}}{{{a^3} \times 6.023 \times {{10}^{23}}}}$
$ \Rightarrow a = 4.13\mathop A\limits^ \circ $
Density of cube $ = a\sqrt 3  = 7.15\mathop A\limits^ \circ  $
For b.c.c., ${\rm{2}}{{\rm{r}}^ + } + 2{r^ - } = 7.15$
$ \Rightarrow {r^ + } + {r^ - } = 3.75\mathop A\limits^ \circ  ..........*$
Also, $2{r^ - } = 4.13\mathop A\limits^ \circ  {\rm{ }}..........**$
$ \Rightarrow {r^ - } = 2.06\mathop A\limits^ \circ  $
${r^ + } = 3.57 - 2.06 = 1.51\mathop A\limits^ \circ  $
$\frac{{{r^ + }}}{{{r^ - }}} = \frac{{1.51}}{{2.06}} = 0.73$


* Distance between the neighbouring Cs+ and Cl- ions = r+ + r-
** Due to anion-anion contact

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)