Skip to main content

Visit this link for 1 : 1 LIVE Classes.

Prove that, $a(a+b)+b(b+1)\geq -\frac {1}{3}$

To prove that $a(a+b)+b(b+1)\geq -\frac {1}{3}$ is same as proving that $a(a+b)+b(b+1)+\frac {1}{3}\geq 0$.

Consider, $a(a+b)+b(b+1)+\frac {1}{3}$

Or, $b^2+b(a+1)+a^2+\frac {1}{3}$

The above can be considered as quadratic expression in b, whose coefficient of $b^2$ is 1.

Discriminant $\Delta$=$(a+1)^2-4.\left( {{a^2} + \frac{1}{3}} \right)$

= $-3a^2+2a-\frac {1}{3}$

= $ - 3\left( {{a^2} - \frac{2}{3}a + \frac{1}{9}} \right)$

= $ - 3{\left( {a - \frac{1}{3}} \right)^2}$

$ \le 0$

Since coefficient of $b^2$ is 1 and discriminant is $ \le 0$ for the quadratic expression in b, the quadratic expression itself is $\ge 0$.

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)