Visit the website manishverma.site for latest posts, courses, admission & more.

### $f(x) = {\left( {\frac{x}{\pi }} \right)^x} + {\left( {\frac{\pi }{x}} \right)^x}$ $\int {f(x)dx + } \int {f(x)\ln xdx} - \int {f(x)\ln \pi dx} = ?$

Combining given three integrals yields $\int {f(x)[1 + \ln x - \ln \pi ]dx}$

$= \int {f(x)(\ln e + \ln x - \ln \pi )dx}$

$= \int {\left[ {{{\left( {\frac{x}{\pi }} \right)}^x} + {{\left( {\frac{\pi }{x}} \right)}^x}} \right]\left( {\ln \frac{{ex}}{\pi }} \right)dx} = I$

Let, ${\left( {\frac{x}{\pi }} \right)^x} = t$

$\therefore x\ln \frac{x}{\pi } = \ln t$

$\therefore x(\ln x - \ln \pi ) = \ln t$

Differentiation yields $x.\frac{1}{x} + \ln x - \ln \pi = \frac{1}{t}.\frac{{dt}}{{dx}}$

$\therefore (1 + \ln x - \ln \pi )dx = \frac{{dt}}{t}$

$\therefore (\ln e + \ln x - \ln \pi )dx = \frac{{dt}}{t}$

$\Rightarrow \ln \left( {\frac{{ex}}{\pi }} \right)dx = \frac{{dt}}{t}$

$I = \int {\left( {t + \frac{1}{t}} \right)\frac{{dt}}{t}}$

$= \int {\left( {1 + \frac{1}{{{t^2}}}} \right)dt}$

$= t - \frac{1}{t} + C$

$= {\left( {\frac{x}{\pi }} \right)^x} - {\left( {\frac{\pi }{x}} \right)^x} + C$

### Sum of the coefficients in the expansion of $(x+y)^n$ ....

If the sum of the coefficients in the expansion of $(x+y)^n$ is 4096, then the greatest coefficient in the expansion is _ _ _ _ . Solution $C_0 + C_1 + C_2 + C_3 + ......................... + C_n =4096$ $\therefore 2^n = 4096 =2^{12}$ $\Rightarrow n = 12$ Greatest coefficient = ${}^{12}{C_6} = 924$