Evaluate I if [ ] represents greatest integer function.
$I = \int\limits_2^5 {\frac{{[{x^3}]}}{{[{{(7 - x)}^3}] + [{x^3}]}}dx} $ .........(*)
$I = \int\limits_2^5 {\frac{{[{{(7 - x)}^3}]}}{{[{{\{ 7 - (7 - x)\} }^3}] + [{{(7 - x)}^3}]}}dx} $, Using one of the properties of definite integration.
$I = \int\limits_2^5 {\frac{{[{{(7 - x)}^3}]}}{{[{x^3}] + [{{(7 - x)}^3}]}}dx} $ .........(#)
Adding (*) & (#),
$2I = \int\limits_2^5 {dx} = 3$
$\therefore I = 1.5$