Visit the website manishverma.site for latest posts, courses, admission & more.

### Simplify, $\frac{{\sqrt {15} + \sqrt {35} + \sqrt {21} + 5}}{{\sqrt 3 + 2\sqrt 5 + \sqrt 7 }}$

The given expression can be rearranged as $\frac{{(\sqrt {15} + 5) + (\sqrt {35} + \sqrt {21} )}}{{\sqrt 3 + 2\sqrt 5 + \sqrt 7 }}$

$= \frac{{\sqrt 5 (\sqrt 3 + \sqrt 5 ) + \sqrt 7 (\sqrt 5 + \sqrt 3 )}}{{\sqrt 3 + 2\sqrt 5 + \sqrt 7 }}$

$= \frac{{(\sqrt 3 + \sqrt 5 )(\sqrt 5 + \sqrt 7 )}}{{\sqrt 3 + 2\sqrt 5 + \sqrt 7 }}= \frac{{(\sqrt 3 + \sqrt 5 )(\sqrt 5 + \sqrt 7 )}}{{(\sqrt 3 + \sqrt 5 ) + (\sqrt 5 + \sqrt 7 )}}$

$= \frac{1}{{\frac{{(\sqrt 3 + \sqrt 5 )}}{{(\sqrt 3 + \sqrt 5 )(\sqrt 5 + \sqrt 7 )}} + \frac{{(\sqrt 5 + \sqrt 7 )}}{{(\sqrt 3 + \sqrt 5 )(\sqrt 5 + \sqrt 7 )}}}}$

$= \frac{1}{{\frac{1}{{(\sqrt 5 + \sqrt 7 )}} + \frac{1}{{(\sqrt 3 + \sqrt 5 )}}}}$

$= \frac{1}{{\frac{{(\sqrt 7 - \sqrt 5 )}}{{(\sqrt 7 + \sqrt 5 )(\sqrt 7 - \sqrt 5 )}} + \frac{{(\sqrt 5 - \sqrt 3 )}}{{(\sqrt 5 + \sqrt 3 )(\sqrt 5 - \sqrt 3 )}}}}$

$= \frac{1}{{\frac{{(\sqrt 7 - \sqrt 5 )}}{2} + \frac{{(\sqrt 5 - \sqrt 3 )}}{2}}}$

$= \frac{2}{{(\sqrt 7 - \sqrt 3 )}} = \frac{{2(\sqrt 7 + \sqrt 3 )}}{{(\sqrt 7 - \sqrt 3 )(\sqrt 7 + \sqrt 3 )}} = \frac{{\sqrt 7 + \sqrt 3}}{2}$

### Sum of the coefficients in the expansion of $(x+y)^n$ ....

If the sum of the coefficients in the expansion of $(x+y)^n$ is 4096, then the greatest coefficient in the expansion is _ _ _ _ . Solution $C_0 + C_1 + C_2 + C_3 + ......................... + C_n =4096$ $\therefore 2^n = 4096 =2^{12}$ $\Rightarrow n = 12$ Greatest coefficient = ${}^{12}{C_6} = 924$