Skip to main content

Visit this link for 1 : 1 LIVE Classes.

Simplify,

$\sqrt {7 - \sqrt {7 + \sqrt {7 - \sqrt {7 + .............\infty {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} terms} } } } $

Let, $y = \sqrt {7 - \sqrt {7 + \sqrt {7 - \sqrt {7 + .............} } } } $

$\therefore y = \sqrt {7 - \sqrt {7 + y} } $

Squaring, ${y^2} = 7 - \sqrt {7 + y} $

Or, $7 - {y^2} = \sqrt {7 + y} $

Squaring, $49 - 14{y^2} + {y^4} = 7 + y$

$\therefore {y^4} - 14{y^2} - y + 42 = 0$

Using factor theorem,

${y^3}(y - 2) + 2{y^2}(y - 2) - 10y(y - 2) - 21(y - 2) = 0$

$ \Rightarrow (y - 2)({y^3} + 2{y^2} - 10y - 21) = 0$

y=2 is one possible solution. For other solutions, consider ${y^3} + 2{y^2} - 10y - 21 = 0$

Using factor theorem,

${y^2}(y + 3) - y(y + 3) - 7(y + 3) = 0$

$ \Rightarrow (y + 3)({y^2} - y - 7) = 0$

y=-3 could be one possible solution but is rejected since $y = \sqrt {7 - \sqrt {7 + \sqrt {7 - \sqrt {7 + .............} } } } > 0$

For other solutions, consider ${y^2} - y - 7 = 0$

$y = \frac{{1 \pm \sqrt {1 + 28} }}{2} = \frac{{1 \pm \sqrt {29} }}{2}$

Since y > 0, the only other possible solution can be $\frac{{1 + \sqrt {29} }}{2}$

Since squaring is involved, both possible solutions i.e. 2 and $\frac{{1 + \sqrt {29} }}{2}$ need to be checked.

Using $y = \sqrt {7 - \sqrt {7 + y} } $ to check.

$\sqrt {7 - \sqrt {7 + 2} }  = \sqrt {7 - \sqrt 9 }  = \sqrt {7 - 3}  = 2 = y$

That means 2 is indeed a solution.

Now, $\frac{{1 + \sqrt {29} }}{2} \approx \frac{{1 + 5.4}}{2} = 3.2$

$\sqrt {7 - \sqrt {7 + y} }  \approx \sqrt {7 - \sqrt {10.2} }  \approx \sqrt {7 - 3.2}  = \sqrt {3.8}  < 3.2$

This means $\frac{{1 + \sqrt {29} }}{2}$ is NOT a solution.

So, $\sqrt {7 - \sqrt {7 + \sqrt {7 - \sqrt {7 + .............\infty {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} terms} } } } =2$

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)