Skip to main content

Visit the website manishverma.site for latest posts, courses, admission & more.

Solve for $\left\{ {x,y,z} \right\}$,

$x+xy+xyz=12$
$y+yz+xyz=21$
$z+xz+xyz=30$

It may be possible to isolate x, y, z in terms of xyz (say t) as follows:

$x(1+y+yz)=12$ [From the 1st equation]

Let us find y+yz in terms of t from the 2nd equation.

$y+yz=21-xyz=21-t$

Now, this y+yz can be substituted in the 1st step above.

$x(1+21-t)=12$

$\therefore x = \frac{{12}}{{22 - t}}$

Also, $y(1+z+xz)=21$ [From the 2nd equation]

$z+xz=30-t$ [From the 3rd equation]

So, $y(1+30-t)=21$

$\therefore y = \frac{{21}}{{31 - t}}$

Putting these values of x and y in the 1st equation $x+xy+t=12$ or $x(1+y)+t=12$,

$\left( {\frac{{12}}{{22 - t}}} \right)\left( {1 + \frac{{21}}{{31 - t}}} \right) + t = 12$

$ \Rightarrow \left( {\frac{{12}}{{22 - t}}} \right)\left( {\frac{{52 - t}}{{31 - t}}} \right) + t = 12$

$ \Rightarrow 12(52 - t) + t(22 - t)(31 - t) = 12(22 - t)(31 - t)$

$ \Rightarrow 624 - 12t + 682t - 53{t^2} + {t^3} = 8184 - 636t + 12{t^2}$

$ \Rightarrow {t^3} - 65{t^2} + 1306t - 7560 = 0$

t=10 satisfies the above equation.

$ \Rightarrow {t^2}(t - 10) - 55t(t - 10) + 756(t - 10) = 0$

$ \Rightarrow (t - 10)({t^2} - 55t + 756) = 0$

$ \Rightarrow (t - 10)(t - 27)(t - 28) = 0$

t has three possible values: 10, 27, 28.

x and y have already been obtained in terms of t. z can also be found in terms of t in the same fashion.

$ z(1 + 12 - t) = 30$

$ \Rightarrow z = \frac{{30}}{{13 - t}}$

$\left\{ {x,y,z} \right\} \equiv \left\{ {\frac{{12}}{{22 - t}},\frac{{21}}{{31 - t}},\frac{{30}}{{13 - t}}} \right\}$

$ \equiv \left\{ {1,1,10} \right\},\left\{ { - \frac{{12}}{5},\frac{{21}}{4}, - \frac{{15}}{7}} \right\},\left\{ { - 2,7, - 2} \right\}$

Popular posts from this blog

A man starts walking from the point P (-3, 4) ....

A man starts walking from the point P (-3, 4), touches the x-axis at R, and then turns to reach at the point Q (0, 2). The man is walking at a constant speed. If the man reaches the point Q in the minimum time, then $50 [(PR)^2 + (RQ)^2 ]$ is equal to _ _ _ _ . Solution For time to be minimum at constant speed, the directions must be symmetric. In other words, the angles made by PR and RQ with the vertical must be the same just like in the law of reflection in optics. $tan \theta = \frac {MP}{MR} = \frac {NQ}{NR} $ $\Rightarrow \frac {3-r}{4} = \frac {r}{2}$ $\Rightarrow r=1 $ So, $R \equiv ( - 1,0)$ Now, $50(PR^2+RQ^2)=50[(4+16)+(1+4)]=1250$