Visit the website 123iitjee.manishverma.site for latest posts, courses, admission & more.

### f is differentiable function such that$f(x + y) - f(x) = f(y) + 2xy$$x,y \in R$$f(x) = ?$

We have, $f'(x) = \mathop {\lim }\limits_{h \to 0} \frac{{f(x + h) - f(x)}}{h}$

$= \mathop {\lim }\limits_{h \to 0} \frac{{2xh + f(h)}}{h}$

$= 2x + \mathop {\lim }\limits_{h \to 0} \frac{{f(h)}}{h}$

Putting y=0 in the original equation yields f(0) = 0. So, the limit is of $\frac{0}{0}$ type.

$= 2x + \mathop {\lim }\limits_{h \to 0} f'(h)$ [Using L.H. Rule]

$= 2x + f'(0)$

Now, $f(x) = \int {2x + f'(0)dx}$

$f(x) = {x^2} + f'(0)x + C$

$\because f(0) = 0,C = 0$

$\therefore f(x) = {x^2} + f'(0)x = {x^2} + Bx$ where B is some constant.

### Sum of the coefficients in the expansion of $(x+y)^n$ ....

If the sum of the coefficients in the expansion of $(x+y)^n$ is 4096, then the greatest coefficient in the expansion is _ _ _ _ . Solution $C_0 + C_1 + C_2 + C_3 + ......................... + C_n =4096$ $\therefore 2^n = 4096 =2^{12}$ $\Rightarrow n = 12$ Greatest coefficient = ${}^{12}{C_6} = 924$