Skip to main content

Visit this link for 1 : 1 LIVE Classes.

$N{H_2} - CO - N{H_2}\xrightarrow{NaOBr} {N_2}$

Hydrazine formed from Urea is further oxidised to $N_2$ as shown below:

$N{H_2} - \mathop {\mathop C\limits^\parallel  }\limits^O  - N{H_2} \xrightarrow[\text{Hoffmann Bromamide Degradation}]{\text{NaOBr}} N{H_2} - N{H_2} \longrightarrow {N_2}$

Assuming 1 dL of blood sample contains 30 mg of Urea, calculate the volume of $N_2$ gas obtained at NTP from the sample.

Solution

From the reaction, 1 mol of Urea liberates 22.4 L $N_2$ at NTP

Or, 60 gm Urea liberates 22.4 L $N_2$ at NTP

Or, 1 gm Urea liberates $\frac {22.4}{60}$ L $N_2$ at NTP

Or, 30 mg Urea liberates $\frac{{22.4}}{{60}} \times 30 \times {10^{ - 3}}$ L $N_2$ at NTP

= $1.12 \times 10^{-2}$ L $N_2$ at NTP

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)