Skip to main content

Visit this link for 1 : 1 LIVE Classes.

Part B: Two Ends of an Inextensible String ......

Two ends of an inextensible string passing over two fixed pulleys with midpoint connected to a block are pulled down with constant speed ve making the block to move up. Then which of the following options is correct?
 
A) $v_m = v_e $
B) $v_m > v_e $
C) $v_m < v_e $
D) Data is insufficient to conclude



Solution


Let's say in certain small time (say, $\Delta t$) the block moves up by $y_2 - y_1 = \Delta y $ distance.


Since the length of the string is constant (say, l), the end point goes down by distance $\left( {l - \sqrt {{a^2} + y_1^2} } \right) - \left( {l - \sqrt {{a^2} + y_2^2} } \right)$ in the same time. 


${v_m} = \frac{{\Delta y}}{{\Delta t}}$ and ${v_e} = \frac{{\left( {l - \sqrt {{a^2} + y_1^2} } \right) - \left( {l - \sqrt {{a^2} + y_2^2} } \right)}}{{\Delta t}}$


${v_e} = \frac{{\sqrt {{a^2} + y_2^2}  - \sqrt {{a^2} + y_1^2} }}{{\Delta t}}$


$ \Rightarrow {v_e} = \frac{{\sqrt {{a^2} + {{({y_1} + \Delta y)}^2}}  - \sqrt {{a^2} + y_1^2} }}{{\Delta t}}$


$ \Rightarrow {v_e} \approx \frac{{\sqrt {{a^2} + y_1^2 + 2{y_1}\Delta y}  - \sqrt {{a^2} + y_1^2} }}{{\Delta t}}$ (assuming $\Delta t$ to be very small which means $\Delta y$ is also very small)


$ \Rightarrow {v_e} \approx \frac{{\sqrt {{a^2} + y_1^2} {{\left( {1 + \frac{{2{y_1}\Delta y}}{{{a^2} + y_1^2}}} \right)}^{1/2}} - \sqrt {{a^2} + y_1^2} }}{{\Delta t}}$


$ \Rightarrow {v_e} \approx \frac{{\sqrt {{a^2} + y_1^2} \left( {1 + \frac{1}{2}.\frac{{2{y_1}\Delta y}}{{{a^2} + y_1^2}}} \right) - \sqrt {{a^2} + y_1^2} }}{{\Delta t}}$

$ \Rightarrow {v_e} \approx \frac{{\frac{{{y_1}\Delta y}}{{\sqrt {{a^2} + y_1^2} }}}}{{\Delta t}}$

$ \Rightarrow {v_e} \approx \frac{{{y_1}}}{{\sqrt {{a^2} + y_1^2} }}\frac{{\Delta y}}{{\Delta t}}$

$ \Rightarrow {v_e} \approx \frac{{{y_1}}}{{\sqrt {{a^2} + y_1^2} }}{v_m}$

$ \Rightarrow {v_e} < {v_m}$

Hence, option (B).

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)