Skip to main content

Visit this link for 1 : 1 LIVE Classes.

Find G.P. such that

$\sum\limits_{r = 1}^3 {{t_r}} = 42$

$\sum\limits_{r = 1}^3 {{{({t_r})}^2}} = 1092$

Using summation formula of G.P. having 1st term as a and common ratio as r we have,

$\frac{{a({r^3} - 1)}}{{(r - 1)}} = 42$ ........(A)

Squaring the terms of the G.P. yields another G.P. having 1st term as $a^2$ and common ratio as $r^2 $. Thus,

$\frac{{{a^2}({r^6} - 1)}}{{({r^2} - 1)}} = 1092$

$ \Rightarrow \frac{{{a^2}({r^3} - 1)({r^3} + 1)}}{{(r - 1)(r + 1)}} = 1092$

Using (A), $42 \times \frac{{a({r^3} + 1)}}{{(r + 1)}} = 1092$

$ \Rightarrow a({r^2} - r + 1) = 26$

Given, $a (r^2 + r + 1) = 42$

$\therefore \frac{{{r^2} + r + 1}}{{{r^2} - r + 1}} = \frac{{42}}{{26}} = \frac{{21}}{{13}}$

$ \Rightarrow 8{r^2} - 34r + 8 = 0$ or $4{r^2} - 17r + 4 = 0$

$ \Rightarrow r = 4,1/4$

Using, $a = \frac{{26}}{{{r^2} - r + 1}};a = 2,32$

The 3 terms of G.P. are either 2, 8, 32 or 32, 8, 2

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)