Skip to main content

Visit this link for 1 : 1 LIVE Classes.

System of Masses $m_1 + m_2 + m_3 $

Three masses $m_1 , m_2 , m_3 $ kept on a smooth horizontal surface under the influence of force F have got certain acceleration (refer figure). Find the force that mass $m_1$ exerts on mass $m_2$.


Solution

Let a be the acceleration.

Taking $m_1 + m_2 + m_3 $ as system,

$F = (m_1 + m_2 + m_3)a$

$\Rightarrow a = \frac {F}{m_1 + m_2 + m_3 }$

Let N be the force that $m_1 $ exerts on $m_2 $. Taking $m_2 + m_3$ as system,

$N = (m_2 + m_3 ) a$

$\Rightarrow N = F. \frac {m_2 + m_3 }{m_1 + m_2 + m_3 } $

Interestingly, as $m_1 \to 0$, $N \to F$

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)