Skip to main content

Visit this link for 1 : 1 LIVE Classes.

Which is larger ....

$\sqrt 7 - \sqrt 6$ Or $\sqrt 13 - \sqrt 12$

We have, $\sqrt 13 > \sqrt 7$ & $\sqrt 12 > \sqrt 6$

$\therefore \sqrt 13 + \sqrt 12 > \sqrt 7 + \sqrt 6 $

$\Rightarrow \frac {1}{\sqrt 13 + \sqrt 12} < \frac {1}{\sqrt 7 + \sqrt 6}$

$\Rightarrow \frac {\sqrt 13 - \sqrt 12}{(\sqrt 13 + \sqrt 12)(\sqrt 13 - \sqrt 12)} < \frac {\sqrt 7 - \sqrt 6}{(\sqrt 7 + \sqrt 6)(\sqrt 7 - \sqrt 6)}$

$\therefore \sqrt 13 - \sqrt 12 < \sqrt 7 - \sqrt 6 $

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)