Skip to main content

Visit this link for 1 : 1 LIVE Classes.

In the circuit shown, the switch S is connected to position P for a long time so that the charge on the capacitor becomes $q_1$ μC. Then S is switched to position Q. After a long time, the charge on the capacitor is $q_2$ μC.

Q.1 The magnitude of $q_1$ is ___ .
Q.2 The magnitude of $q_2$ is ___ .

Solution

The figure below shows the situation when switch S is connected to position P.


No current flows through the capacitor in steady state.

So, $I=\frac {2-1}{1+2}=\frac {1}{3} A$

$V_C =2-2I=2-2\times \frac {1}{3}=\frac {4}{3} V$

$q_1 =CV_C =1\times \frac {4}{3} = \frac {4}{3} \mu C$

Actually, the answer to Q.1 is $q_1 =\frac {4}{3}=1.33$ as the unit is outside.

The figure below shows the situation when switch S is connected to position Q.


Again, no current flows through the capacitor in steady state.

$I=\frac {2}{1+2}=\frac {2}{3} A$

$V_C = \frac {2}{3} \times 1 = \frac {2}{3} V$

$q_2 = 1 \times \frac {2}{3} = \frac {2}{3} \mu C$

Actually, the answer to Q.2 is $q_2 =\frac {2}{3}=0.67$ as the unit is outside.

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)