Skip to main content

Visit the website manishverma.site for latest posts, courses, admission & more.

A thin rod of mass M and length a ....

A thin rod of mass M and length a is free to rotate in horizontal plane about a fixed vertical axis passing through point O. A thin circular disc of mass M and of radius a/4 is pivoted on this rod with its center at a distance a/4 from the free end so that it can rotate freely about its vertical axis, as shown in the figure. Assume that both the rod and the disc have uniform density and they remain horizontal during the motion. An outside stationary observer finds the rod rotating with an angular velocity $\Omega$ and the disc rotating about its vertical axis with angular velocity $4\Omega$. The total angular momentum of the system about the point O is $(\frac {Ma^2\Omega}{48}) n$.

The value of n is ___.

Solution

$L_{System}=L_{Rod}+L_{Disc}$

$L_{Rod}=\frac {Ma^2\Omega}{3}$

$L_{Disc}=I_{CM}.4\Omega + Mvr$

$\Rightarrow L_{Disc}=\frac {M(\frac{a}{4})^2}{2}.4\Omega + M.r\Omega.r$

$\Rightarrow L_{Disc}=\frac {Ma^2}{32}.4\Omega + M.r^2\Omega$

$\Rightarrow L_{Disc}=\frac {Ma^2\Omega}{8} + M(\frac {3a}{4})^2\Omega$

$\Rightarrow L_{Disc}=\frac {Ma^2\Omega}{8} + \frac {9a^2M\Omega}{16}=\frac {11Ma^2\Omega}{16}$

Now, $L_{System}=\frac {Ma^2\Omega}{3}+\frac {11Ma^2\Omega}{16}=\frac {49Ma^2\Omega}{48}$

So, n = 49.

Popular posts from this blog

A man starts walking from the point P (-3, 4) ....

A man starts walking from the point P (-3, 4), touches the x-axis at R, and then turns to reach at the point Q (0, 2). The man is walking at a constant speed. If the man reaches the point Q in the minimum time, then $50 [(PR)^2 + (RQ)^2 ]$ is equal to _ _ _ _ . Solution For time to be minimum at constant speed, the directions must be symmetric. In other words, the angles made by PR and RQ with the vertical must be the same just like in the law of reflection in optics. $tan \theta = \frac {MP}{MR} = \frac {NQ}{NR} $ $\Rightarrow \frac {3-r}{4} = \frac {r}{2}$ $\Rightarrow r=1 $ So, $R \equiv ( - 1,0)$ Now, $50(PR^2+RQ^2)=50[(4+16)+(1+4)]=1250$