Skip to main content

Visit this link for 1 : 1 LIVE Classes.

An ideal gas undergoes a four step cycle ...

An ideal gas undergoes a four step cycle as shown in the P − V diagram below. During this cycle, heat is absorbed by the gas in


(A) steps 1 and 2           (B) steps 1 and 3
(C) steps 1 and 4           (D) steps 2 and 4

Solution


Step 1 (A to B): Isobaric

$V \propto T$

$T_B > T_A $

$Q \propto C_p \Delta T > 0 $

Step 2 (B to C): Isochoric

$P \propto T$

$T_C < T_B$

$Q \propto C_v \Delta T < 0$

Step 3 (C to D): Isobaric

$V \propto T$

$T_D < T_C$

$Q \propto C_p \Delta T < 0$

Step 4 (D to A): Isochoric

$P \propto T$

$T_A > T_D$

$Q \propto C_v \Delta T > 0$

Answer: (C)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)