Select correct option(s).
(B) a, b, c are in G.P.
(C) a, b, c are in H.P.
(D) a+b+c = bc
Solution
We have, $a + \frac{1}{{b + \frac{1}{c}}} = \frac{{115}}{{16}}$
$ \Rightarrow a + \frac{c}{{bc + 1}} = \frac{{115}}{{15 + 1}}$
$ \Rightarrow a + \frac{c}{{bc + 1}} = \frac{{115}}{{5 \times 3 + 1}}$
$ \Rightarrow a + \frac{c}{{bc + 1}} = \frac{{16 \times 7 + 3}}{{5 \times 3 + 1}}$
$ \Rightarrow a + \frac{c}{{bc + 1}} = 7 + \frac{3}{{5 \times 3 + 1}}$
$\therefore \{ a,b,c\} \equiv \{ 7,5,3\} $
Hence, (A) & (D).