Skip to main content

Visit this link for 1 : 1 LIVE Classes.

$f(x) = \frac{{{x^2} - 3x - 6}}{{{x^2} + 2x + 4}}$

Domain/Range/Onto/Into

Let $f:R \to R$ be defined by $f(x) = \frac{{{x^2} - 3x - 6}}{{{x^2} + 2x + 4}}$. Then which of the following statements is(are) correct?

(A) f is onto
(B) Range of f is $\left[ { - \frac{3}{2},2} \right]$
(C) f is into
(D) Domain of f is [-4, 0]

Solution

Let $y = \frac{{{x^2} - 3x - 6}}{{{x^2} + 2x + 4}}$

$\Rightarrow (y-1)x^2 +(2y+3)x +4y+6 = 0$

$\because x\in R$, $(2y+3)^2-4(y-1)(4y+6) \geq 0$ assuming above equation is quadratic equation that is when $y \neq 1$. However, we notice that when $y=1, x\in R$ so y = 1 will be accepted at the end.

$\Rightarrow -12y^2 +4y + 33 \geq 0 $

$ \Rightarrow  - \left( {y + \frac{3}{2}} \right)\left( {y - \frac{{11}}{6}} \right) \ge 0$

The wavy-curve for the expression $- \left( {y + \frac{3}{2}} \right)\left( {y - \frac{{11}}{6}} \right)$ is shown below.




Clearly, $y \in \left[ { - \frac{3}{2},\frac{{11}}{6}} \right]$. Note that y = 1 is already accounted for.

Since range $\left[ { - \frac{3}{2},\frac{{11}}{6}} \right]$ is not same as co-domain R, the function is into function. Hence, option (C).

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)