Skip to main content

Visit this link for 1 : 1 LIVE Classes.

$f(x) + f(x + 1) = 2$

$\int\limits_0^8 {f(x)dx + 2\int\limits_{ - 1}^3 {f(x)dx} } = ?$

Let $f:R \to R$ be a continuous function such that $f(x) + f(x + 1) = 2$, for all $x\in R$. If ${I_1} = \int\limits_0^8 {f(x)dx} $ and ${I_2} = \int\limits_{ - 1}^3 {f(x)dx} $, then the value of $I_1 +2I_2 $ is equal to ......

Solution

$x \to t + 1$ in $I_2$ we have ${I_2} = \int\limits_{ - 2}^2 {f(t + 1)dt} $

${I_1} + 2{I_2} = \int\limits_0^8 {f(x)dx}  + 2\int\limits_{ - 2}^2 {f(t + 1)dt} $

$= \int\limits_0^8 {f(x)dx}  + 2\int\limits_{ - 2}^2 {f(x + 1)dx} $

$ = \int\limits_0^8 {f(x)dx}  + 2\int\limits_{ - 2}^2 {[2 - f(x)]dx} $

$ = \int\limits_0^8 {f(x)dx}  - 2\int\limits_{ - 2}^2 {f(x)dx}  + 4\int\limits_{ - 2}^2 {dx} $

$ = \int\limits_0^8 {f(x)dx}  - 2\int\limits_{ - 2}^2 {f(x)dx}  + 16$

$x \to x + 1$ in $f(x) + f(x + 1) = 2$ yields $f(x + 1) + f(x + 2) = 2$

$\therefore f(x) + f(x + 1) = f(x + 1) + f(x + 2)$

$\Rightarrow f(x+2)=f(x)$ which means the function is periodic with period 2. 

So, $I_1 +2I_2$ reduces to $4\int\limits_0^2 {f(x)dx}  - 4\int\limits_0^2 {f(x)dx}  + 16 = 16$

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)