Skip to main content

Visit this link for 1 : 1 LIVE Classes.

$i^i$ where $i=\sqrt {-1}$ is a real number. T/F

We have, $e^{i\theta}=cos\theta +i sin\theta $

Let, $\theta = 2n\pi + \frac {\pi}{2}$

Then, $e^{i.(2n\pi + \frac {\pi}{2})}=cos (2n\pi + \frac {\pi}{2}) +i sin (2n\pi + \frac {\pi}{2}) $

$\Rightarrow e^{i.(4n+1) \frac {\pi}{2}}=0+i.1 $

$\Rightarrow i.(4n+1)\frac {\pi}{2} = \ln i $

Let, $z=i^i$

$\Rightarrow \ln z = i.\ln i$

So, $\ln z = i.i(4n+1)\frac {\pi}{2}= i^2.(4n+1)\frac {\pi}{2} = -(4n+1)\frac {\pi}{2}$

$\Rightarrow z = e^{-(4n+1)\frac {\pi}{2}}$ = Real number

Hence, True.

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)