Skip to main content

Visit this link for 1 : 1 LIVE Classes.

A cup of coffee cools from $90^{\circ}$C ....

A cup of coffee cools from $90^{\circ}$C to $80^{\circ}$C in t minutes when the room temperature is $20^{\circ}$C. The time taken by a similar cup of coffee to cool from $80^{\circ}$C to $60^{\circ}$C at the same room temperature $20^{\circ}$C is:

(1) $\frac {13}{10}$t
(2) $\frac {13}{5}$t
(3) $\frac {10}{13}$t
(4) $\frac {5}{13}$t

Solution

Using law of cooling, $ - \frac{{\Delta C}}{{\Delta t}} = k({T_{avg.}} - {T_{Room}})$ we have,

Case I

$ - \frac{{(80 - 90)}}{t} = k\left( {\frac{{90 + 80}}{2} - 20} \right)$

$ \Rightarrow \frac{{10}}{t} = 65k$

$\therefore \frac{2}{t} = 13k$ ..........(*)

Case II

$ - \frac{{(60 - 80)}}{{t'}} = k\left( {\frac{{80 + 60}}{2} - 20} \right)$

$ \Rightarrow \frac{{20}}{{t'}} = 50k$

$\therefore \frac{2}{{t'}} = 5k$ ..........(#)

From (*) & (#),

$\frac{{t'}}{t} = \frac{{13}}{5}$

$\therefore t' = \frac{{13}}{5}t$

Answer: (2)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)