Skip to main content

Visit this link for 1 : 1 LIVE Classes.

A particle moving in a circle of radius R ....

A particle moving in a circle of radius R with a uniform speed takes time T to complete one revolution. If this particle were projected with the same speed at an angle '$\theta $' to the horizontal, the maximum height attained by it equals 4R. The angle of projection '$\theta $' is then given by:

(1) $\theta  = {\cos ^{ - 1}}\sqrt {\frac{{g{T^2}}}{{{\pi ^2}R}}} $
(2) $\theta  = {\cos ^{ - 1}}\sqrt {\frac{{{\pi ^2}R}}{{g{T^2}}}} $
(3) $\theta  = {\sin ^{ - 1}}\sqrt {\frac{{{\pi ^2}R}}{{g{T^2}}}} $
(4) $\theta  = {\sin ^{ - 1}}\sqrt {\frac{{2g{T^2}}}{{{\pi ^2}R}}} $

Solution

For circular motion we have, $v=\frac {2\pi R}{T}$

For projectile motion we have, max. height = $H=\frac {v^2 sin^2 \theta }{2g}=4R$

$ \Rightarrow {\left( {\frac{{2\pi R}}{T}} \right)^2}\frac{{{{\sin }^2}\theta }}{{2g}} = 4R$

$\therefore \sin \theta  = \sqrt {\frac{{2g{T^2}}}{{{\pi ^2}R}}} $ Or $\theta  = {\sin ^{ - 1}}\sqrt {\frac{{2g{T^2}}}{{{\pi ^2}R}}} $

Answer: (4)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)