Skip to main content

Visit this link for 1 : 1 LIVE Classes.

A particle of mass M = 0.2 kg is initially at rest ....

A particle of mass M = 0.2 kg is initially at rest in the xy-plane at a point (x = -l, y = -h), where l = 10 m and h = 1 m . The particle is accelerated at time t = 0 with a constant acceleration $a = 10 m/s^2$ along the positive x-direction. Its angular momentum and torque with respect to the origin, in SI units, are represented by L and $\tau $ respectively. $\hat i$, $\hat j$ and $\hat k $ are unit vectors along the positive x, y and z-directions, respectively. If $\hat k = \hat i \times \hat j $ then which of the following statement(s) is(are) correct?

(A) The particle arrives at the point (x = l, y = -h) at time t = 2 s.
(B) $\vec τ = 2 \hat k $ when the particle passes through the point (x = l, y = -h)
(C) $\vec L = 4 \hat k $ when the particle passes through the point (x = l, y = -h)
(D) $\vec τ = \hat k $ when the particle passes through the point (x = 0, y = -h)

Solution


$s_x =u_x t + \frac {1}{2} a_x t^2 $

$\Rightarrow 2l = 0+\frac {1}{2} 10 t^2 $ at (l, -h) or (10, -1)

$\Rightarrow 2\times 10 =5t^2$

$\Rightarrow t = 2 $ sec

$\vec L = \vec r \times \vec p = (l\hat i - h\hat j)\times Mv_x \hat i = Mhv_x \hat k = Mha_x t \hat k$

at (10, -1) $\vec L = 0.2\times 1 \times 10 \times 2 \hat k = 4 \hat k$

$\vec \tau  = \frac{{d\vec L}}{{dt}} = Mh{a_x}\hat k$

$=0.2\times 1 \times 10 \hat k = 2 \hat k$

The above answer for $\tau $ is independent of x-coordinate.

Answer: (A), (B) & (C)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)