Skip to main content

Visit this link for 1 : 1 LIVE Classes.

A radioactive nucleus ${}_Z^AX$ undergoes ....

A radioactive nucleus ${}_Z^AX$ undergoes spontaneous decay in the sequence ${}_Z^AX \to {}_{Z - 1}B \to {}_{Z - 3}C \to {}_{Z - 2}D$ where Z is the atomic number of element X. The possible decay particles in the sequence are:

(1) $\alpha,\beta^-.\beta^+$
(2) $\alpha,\beta^+,\beta^-$
(3) $\beta^+,\alpha,\beta^-$
(4) $\beta^-,\alpha,\beta^+$

Solution

We have the following possible nuclear reactions:

${}_Z^AX \to {}_{Z - 1}^AB + {}_1^0{\beta ^ + }$
${}_{Z - 1}^AB \to {}_{Z - 3}^{A - 4}C + {}_2^4H{e^{2 + }}$
${}_{Z - 3}^{A - 4}C \to {}_{Z - 2}^{A - 4}D + {}_{ - 1}^0{\beta ^ - }$

Answer: (3)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)