Skip to main content

Visit this link for 1 : 1 LIVE Classes.

A small block slides down on a smooth inclined plane ....

A small block slides down on a smooth inclined plane, starting from rest at time t = 0. Let $S_n$ be the distance travelled by the block in the interval t = n-1 to t = n. Then, the ratio $\frac {S_n}{S_{n+1}}$ is:

(1) $\frac {2n-1}{2n}$
(2) $\frac {2n-1}{2n+1}$
(3) $\frac {2n+1}{2n-1}$
(4) $\frac {2n}{2n-1}$

Solution

The acceleration of the block $a=gsin\theta $ which is a constant and hence the following formula for distance in $n^{th}$ second would be applicable:

$S_n = u + (n-\frac {1}{2})a = 0 + (n-\frac {1}{2})a = (n-\frac {1}{2})a$

Now, $\frac {S_n}{S_{n+1}}=\frac {(n-\frac {1}{2})a}{(n+1-\frac {1}{2})a}=\frac {n-\frac {1}{2}}{n+\frac {1}{2}}=\frac {2n-1}{2n+1}$

Answer: (2)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)