Visit the website 123iitjee.manishverma.site for latest posts, courses, admission & more.

An $\alpha$-particle (mass 4 amu) and a singly ....

An $\alpha$-particle (mass 4 amu) and a singly charged sulfur ion (mass 32 amu) are initially at rest. They are accelerated through a potential V and then allowed to pass into a region of uniform magnetic field which is normal to the velocities of the particles. Within this region, the $\alpha$-particle and the sulfur ion move in circular orbits of radii $r_{\alpha}$ and $r_S$, respectively. The ratio ($r_S/r_\alpha$) is _____.

Solution

$r = \sqrt {\frac{{2mV}}{{q{B^2}}}}$

So, $r \propto \sqrt {\frac{m}{q}}$

$\frac{{{r_S}}}{{{r_\alpha }}} = \sqrt {\frac{{{m_S}}}{{{q_S}}} \times \frac{{{q_\alpha }}}{{{m_\alpha }}}} = \sqrt {\frac{{{m_S}}}{{{m_\alpha }}} \times \frac{{{q_\alpha }}}{{{q_S}}}} = \sqrt {\frac{{32}}{4} \times \frac{2}{1}} = 4$

$f(x)=x^6+2x^4+x^3+2x+3 $$\mathop {\lim }\limits_{x \to 1} \frac{{{x^n}f(1) - f(x)}}{{x - 1}} = 44$$n=?$

Let $f(x)=x^6+2x^4+x^3+2x+3,x \in R$. Then the natural number n for which $\mathop {\lim }\limits_{x \to 1} \frac{{{x^n}f(1) - f(x)}}{{x - 1}} = 44$ is _ _ _ _ . Solution Since the limit has $\left[ {\frac{0}{0}} \right]$ form, L.H. Rule is applicable. Thus, $\mathop {\lim }\limits_{x \to 1} n{x^{n - 1}}f(1) - f'(x) = 44$ $\therefore nf(1) - f'(1) = 44$ $\therefore n.9 - ({6.1^5} + {8.1^3} + {3.1^2} + 2.1) = 44$ $\Rightarrow 9n - 19 = 44$ $\Rightarrow n=7$