Skip to main content

Visit this link for 1 : 1 LIVE Classes.

An electromagnetic wave of wavelength $'\lambda '$ ....

An electromagnetic wave of wavelength $'\lambda '$ is incident on a photosensitive surface of negligible work function. If 'm' mass of photoelectron emitted from the surface has de-Broglie wavelength $\lambda_d$, then:

(1) $\lambda  = \left( {\frac{{2m}}{{hc}}} \right){\lambda _d}^2$
(2) ${\lambda _d} = \left( {\frac{{2mc}}{h}} \right){\lambda ^2}$
(3) $\lambda  = \left( {\frac{{2mc}}{h}} \right){\lambda _d}^2$
(4) $\lambda  = \left( {\frac{{2h}}{{mc}}} \right){\lambda _d}^2$

Solution

de-Broglie wavelength $\lambda_d = \frac {h}{p}$

p can be obtained from photoelectric effect equation $h\nu  = \phi  + \frac{1}{2}m{v^2}$

Or $\frac{{hc}}{\lambda } = 0 + \frac{1}{2}\frac{{{p^2}}}{m}$

$\therefore p = \sqrt {\left( {\frac{{2mc}}{\lambda }} \right)h} $

Now, ${\lambda _d} = \frac{h}{p} = \frac{h}{{\sqrt {\left( {\frac{{2mc}}{\lambda }} \right)h} }} = \sqrt {\left( {\frac{h}{{2mc}}} \right)\lambda } $

$\therefore \lambda  = \left( {\frac{{2mc}}{h}} \right){\lambda _d}^2$

Answer: (3)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)