Visit the website manishverma.site for latest posts, courses, admission & more.

### The escape velocity from the Earth's surface is v ....

The escape velocity from the Earth's surface is v. The escape velocity from the surface of another planet having radius four times that of Earth and the same mass density is:

(1) v                     (2) 2v
(3) 3v                   (4) 4v

Solution

${v_e} = \sqrt {\frac{{2GM}}{R}} \propto \sqrt {\frac{M}{R}}$

$\therefore {v_e} \propto \sqrt {\frac{{\rho .\frac{4}{3}\pi {R^3}}}{R}}$

$\therefore {v_e} \propto R$ since mass density $\rho$ is same

$\frac{{{{({v_e})}_{Planet}}}}{{{{({v_e})}_{Earth}}}} = \frac{{{R_{Planet}}}}{{{R_{Earth}}}}$

$\Rightarrow \frac{{{{({v_e})}_{Planet}}}}{v} = \frac{{4{R_{Earth}}}}{{{R_{Earth}}}} = 4$

$\therefore {({v_e})_{Planet}} = 4v$

### Sum of the coefficients in the expansion of $(x+y)^n$ ....
If the sum of the coefficients in the expansion of $(x+y)^n$ is 4096, then the greatest coefficient in the expansion is _ _ _ _ . Solution $C_0 + C_1 + C_2 + C_3 + ......................... + C_n =4096$ $\therefore 2^n = 4096 =2^{12}$ $\Rightarrow n = 12$ Greatest coefficient = ${}^{12}{C_6} = 924$