Skip to main content

Visit this link for 1 : 1 LIVE Classes.

The half-life of a radioactive nuclide is 100 hours ....

The half-life of a radioactive nuclide is 100 hours. The fraction of original activity that will remain after 150 hours would be:

(1) $\frac {1}{2}$                    (2) $\frac {1}{2\sqrt 2}$
(3) $\frac {2}{3}$                    (4) $\frac {2}{3\sqrt 2}$

Solution

Activity $A \propto N = \frac {N_0}{2^n}$

$A_0 \propto N_0 $

Fraction of original activity $\frac {A}{A_0}=\frac {1}{2^n}$, where n = number of half-lives

If half-life is 100 hours, number of half-lives in 150 hours = 1.5 = n

So, $\frac {A}{A_0}=\frac {1}{2^{1.5}}=\frac {1}{2\sqrt 2}$

Answer: (2)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)