Skip to main content

Visit this link for 1 : 1 LIVE Classes.

The pressure acting on a submarine is $3 \times 10^5 Pa $ ....

The pressure acting on a submarine is $3 \times 10^5 Pa $ at a certain depth. If the depth is doubled, the percentage increase in the pressure acting on the submarine would be:

(Assume that atmospheric pressure is $1 \times 10^5 Pa$, density of water is $10^3 kgm^{-3}$, $g=10 ms^{-2}$)

(A) $\frac {3}{200} $%
(B) $\frac {5}{200} $%
(C) $\frac {200}{3} $%
(D) $\frac {200}{5} $%

Solution

We have, $P_1 = P_a + h_1 dg$ & $P_2 = P_a + h_2 dg$

% increase in pressure = $\frac {P_2 - P_1 }{P_1} \times 100 = \frac {(h_2 - h_1 ) dg }{P_1 } \times 100$

$\therefore$ % increase = $\frac {(2h - h) \times 10^3 \times 10 }{3 \times 10^5 } \times 100 = \frac {h}{30} \times 100$

Also, $P_1 = 3 \times 10^5 = 10^5 + h \times 10^3 \times 10 $

$\therefore h = 20 m$ 

Now, % increase in pressure = $ \frac {h}{30} \times 100 = \frac {20}{30} \times 100 = \frac {200}{3}% $

Answer: (C)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)