Skip to main content

Visit this link for 1 : 1 LIVE Classes.

Two charged spherical conductors of radius $R_1$ and $R_2$ ....

Two charged spherical conductors of radius $R_1$ and $R_2$ are connected by wire. Then the ratio of surface charge densities of the spheres $\frac {\sigma_1}{\sigma_2}$ is:

(1) $\frac {R_1}{R_2}$
(2) $\frac {R_2}{R_1}$
(3) $\sqrt \frac {R_1}{R_2}$
(4) $\sqrt \frac {R_2}{R_1}$

Solution

$V_1=V_2$

$\therefore k\frac {Q_1}{R_1}=k\frac {Q_2}{R_2}$

$\Rightarrow \frac {\sigma_1 . A_1}{R_1}=\frac {\sigma_2 . A_2}{R_2}$

$\Rightarrow \frac {\sigma_1 . 4\pi {R_1}^2}{R_1}=\frac {\sigma_2 . 4\pi {R_2}^2}{R_2}$

$\Rightarrow \sigma_1 . R_1 = \sigma_2 . R_2 $

$\Rightarrow \frac {\sigma_1}{\sigma_2} = \frac {R_2}{R_1}$

Answer: (2)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)