Skip to main content

Visit this link for 1 : 1 LIVE Classes.

Two point charges -Q and +Q/√3 are placed ....

Two point charges -Q and +Q/√3 are placed in the xy-plane at the origin (0, 0) and a point (2, 0), respectively, as shown in the figure. This results in an equipotential circle of radius R and potential V = 0 in the xy-plane with its center at (b, 0). All lengths are measured in meters.


Q.1 The value of R is ___ meter.
Q.2 The value of b is ___ meter.

Solution



$V_A=\frac {-kQ}{b-R}+\frac {kQ/\sqrt 3}{2-(b-R)}=0$

$\Rightarrow \frac {\sqrt 3}{b-R}=\frac {1}{R-b+2}=\frac {\sqrt 3+1}{2}$

$\Rightarrow b-R=\frac {2\sqrt 3}{\sqrt 3+1}=3-\sqrt 3$ ....(*)

$V_B=\frac {-kQ}{b+R}+\frac {kQ/\sqrt 3}{b+R-2}=0$

$\Rightarrow \frac {\sqrt 3}{b+R}=\frac {1}{b+R-2}=\frac {\sqrt 3-1}{2}$

$\Rightarrow b+R=\frac {2\sqrt 3}{\sqrt 3-1}=3+\sqrt 3$ ....(#)

From (*) & (#), b=3.00 & R=1.73

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)