Skip to main content

Updates ...

Visit the website for latest posts, courses, admission & more.

For guest/sponsored article(s), please check this link.

When $(x-1)^{100}+(x-2)^{200}$ is divided by $x^2-3x+2$,

Remainder = ?

We have, $(x-1)^{100}+(x-2)^{200}=(x-1)(x-2)q(x)+r(x)$

Since divisor is quadratic, the remainder must be linear.

So, $r(x)=ax+b$


Putting $x=1$ above yields $a+b=1$

Substituting $x=2$, yields $2a+b=1$

Clearly, a=0 & b=1

So, remainder $=ax+b=1$.

Popular posts from this blog