Skip to main content

Visit this link for 1 : 1 LIVE Classes.

$x^2+4y^2+16z^2=48$

$xy+4yz+2zx=24$

$\{x,y,z\}\equiv$

(A) $\{  \mp 4, \pm 2, \pm 1\} $
(B) $\{  \pm 4, \mp 2, \pm 1\} $
(C) $\{  \pm 4, \pm 2, \mp 1\} $
(D) $\{  \pm 4, \pm 2, \pm 1\} $

Solution

$(x+2y+4z)^2=x^2+4y^2+16z^2+4xy+8zx+16yz$

$=x^2+4y^2+16z^2+4(xy+2zx+4yz)$

$=48+4\times 24 =144$

$\Rightarrow x+2y+4z=\pm 12$ ......(*)

Now, $x^2+4y^2+16z^2=48=2\times 24 =2(xy+4yz+2zx)$

$\Rightarrow x^2+(2y)^2+(4z)^2-x(2y)-(2y)(4z)-(4z)x=0$

$\Rightarrow \frac{1}{2}\left[ {{{(x - 2y)}^2} + {{(2y - 4z)}^2} + {{(4z - x)}^2}} \right] = 0$

$\Rightarrow x=2y=4z$

From (*), $x+x+x=\pm 12$

$\Rightarrow x=\pm 4$, $y=\pm 2$, $z=\pm 1$

Answer: Option (D)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)