Skip to main content

Visit this link for 1 : 1 LIVE Classes.

$2MnO_4^- +bC_2O_4 ^{2-} + CH^+ $

$\downarrow $

$ xMn^{2+} + y CO_2 + z H_2 O $

$2MnO_4^- +bC_2O_4 ^{2-} + CH^+ \rightarrow xMn^{2+} + y CO_2 + z H_2 O $

If the above equation is balanced with integer coefficients, the value of c is _ _ _ _ . (Round off to the nearest integer)

Solution

$ Mn^{7+} + 5e \rightarrow Mn^{2+} $ .......... (*)
$ C_2 ^{3+} \rightarrow 2C^{4+} + 2e $ ...........(#)

2 $\times$ (*) + 5 $\times$ (#)

________________________________________________

$2Mn^{7+} + 5C_2 ^{3+} \rightarrow 2Mn^{2+} + 10 C ^{4+} $

So, $2MnO_4 ^- + 5C_2O_4 ^{2-} + 16 H^ + \rightarrow 2Mn^{2+} + 10 CO_2 + 8 H_2 O $

$\therefore c = 16 $

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)