Skip to main content

Visit this link for 1 : 1 LIVE Classes.

A 6.50 molal solution of KOH (aq) has density of $1.89 g.cm^{-3} $ ....

A 6.50 molal solution of KOH (aq) has density of $1.89 g.cm^{-3} $. The molarity of solution is _ _ _ _ $mol.dm^{-3} $. (Round off to the nearest integer).

[Atomic masses: K = 39.0 u, O = 16.0 u, H = 1.0 u]

Solution

We have, $6.50 = \frac{{w \times 1000}}{{56 \times W}}$

$\therefore \frac{W}{w} = \frac{{1000}}{{6.50 \times 56}}$

Density $ = \frac{{w + W}}{V} = 1.89 \times 1000$ g/ltr

Molarity $ = \frac{w}{{56 \times V}} = \frac{{w \times 1.89 \times 1000}}{{56 \times (w + W)}} = \frac{{1.89 \times 1000}}{{56 \times \left( {1 + \frac{W}{w}} \right)}} = \frac{{1.89 \times 1000}}{{56 \times \left( {1 + \frac{{1000}}{{6.50 \times 56}}} \right)}} = 9$

[Note: $ltr = dm^3 = 1000 cm^3 $]

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)