Skip to main content

Visit this link for 1 : 1 LIVE Classes.

A body of mass 'm' dropped from a height 'h' ....

A body of mass 'm' dropped from a height 'h' reaches the ground with a speed of $ 0.8 \sqrt {gh} $. The value of work done by the air-friction is:

(A) -0.68 mgh
(B) 0.64 mgh
(C) mgh
(D) 1.64 mgh

Solution

Short Method

Air friction force is resistive force whose work-done must be negative. The only option with negative value is (A).

Detailed Method

Work done by all forces $ W_{all} = \Delta K $

$ \therefore W_{mg} + W_{air friction} = \frac {1}{2} mv^2 - 0 $

$ \Rightarrow W_{fr} = \frac {1}{2} m \times (0.8 \sqrt {gh} )^2 -  mgh $

$ \Rightarrow W_{fr} = 0.32 mgh - mgh = -0.68 mgh $

Answer: (A)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)