Visit the website 123iitjee.manishverma.site for latest posts, courses, admission & more.

### A fringe width of 6 mm was produced ....

A fringe width of 6 mm was produced for two slits separated by 1 mm apart. The screen is placed 10 m away. The wavelength of light used is 'x' nm. The value of 'x' to the nearest integer is _ _ _ _ .

Solution

Fringe width = $6 mm = \frac {\lambda D}{d} = \frac {\lambda \times 10}{1\times 10^{-3}}$

$\Rightarrow \lambda = \frac {6 \times 10^{-3} \times 10^ {-3}}{10} = 6 \times 10^{-7} = 600 nm$

$\therefore x = 600$

### A man starts walking from the point P (-3, 4) ....

A man starts walking from the point P (-3, 4), touches the x-axis at R, and then turns to reach at the point Q (0, 2). The man is walking at a constant speed. If the man reaches the point Q in the minimum time, then $50 [(PR)^2 + (RQ)^2 ]$ is equal to _ _ _ _ . Solution For time to be minimum at constant speed, the directions must be symmetric. In other words, the angles made by PR and RQ with the vertical must be the same just like in the law of reflection in optics. $tan \theta = \frac {MP}{MR} = \frac {NQ}{NR}$ $\Rightarrow \frac {3-r}{4} = \frac {r}{2}$ $\Rightarrow r=1$ So, $R \equiv ( - 1,0)$ Now, $50(PR^2+RQ^2)=50[(4+16)+(1+4)]=1250$