A plane electromagnetic wave of frequency 500 MHz is travelling in vacuum along y-direction. At a particular point in space and time, $\vec B = 8.0 \times 10^{-8} \hat z T$. The value of electric field at this point is:
(speed of light = $3 \times 10^8 ms^{-1} $)
$\hat x , \hat y , \hat z $ are unit vectors along x, y and z directions.
(A) $24 \hat x V/m $
(B) $2.6 \hat x V/m $
(C) $-24 \hat x V/m $
(D) $-2.6 \hat y V/m $
Solution
We have, $\frac{{\vec E \times \vec B}}{{|\vec E \times \vec B|}} = \hat y$ or $\hat E \times \hat B = \hat y$
$\therefore \hat E \times \hat z = \hat y$
$\therefore \hat E = -\hat x $
Also, $c=\frac {E}{B}$ or E = c.B
$\therefore E = 3 \times 10^8 \times 8.0 \times 10^ {-8} = 24 V/m $
So, $\vec E = E (-\hat x ) = -24 \hat x V/m $
Answer: (C)