Skip to main content

Visit this link for 1 : 1 LIVE Classes.

A plane electromagnetic wave of frequency 500 MHz ....

A plane electromagnetic wave of frequency 500 MHz is travelling in vacuum along y-direction. At a particular point in space and time, $\vec B = 8.0 \times 10^{-8} \hat z T$. The value of electric field at this point is:

(speed of light = $3 \times 10^8 ms^{-1} $)

$\hat x , \hat y , \hat z $ are unit vectors along x, y and z directions.

(A) $24 \hat x V/m $
(B) $2.6 \hat x V/m $
(C) $-24 \hat x V/m $
(D) $-2.6 \hat y V/m $

Solution

We have, $\frac{{\vec E \times \vec B}}{{|\vec E \times \vec B|}} = \hat y$ or $\hat E \times \hat B = \hat y$

$\therefore \hat E \times \hat z = \hat y$

$\therefore \hat E = -\hat x $

Also, $c=\frac {E}{B}$ or E = c.B

$\therefore E = 3 \times 10^8 \times 8.0 \times 10^ {-8} = 24 V/m $

So, $\vec E = E (-\hat x ) = -24 \hat x V/m $

Answer: (C)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)