Skip to main content

Visit this link for 1 : 1 LIVE Classes.

$AB_2 $ is 10% dissociated in water to $A^{2+}$ and $B^-$ ....

$AB_2 $ is 10% dissociated in water to $A^{2+}$ and $B^-$. The boiling point of a 10.0 molal aqueous solution of $AB_2 $ is _ _ _ _ $^ \circ C $. (Round off to the nearest integer)

[Given: Molal elevation constant of water $K_b  = 0.5 K.Kg.mol^{-1} $, boiling point of pure water = $100 ^\circ C $]

Solution

At ionic equilibrium, $\mathop {A{B_2}}\limits_{a(1 - \alpha )} \rightleftharpoons \mathop {{A^{2 + }}}\limits_{a\alpha }  + \mathop {2{B^ - }}\limits_{2a\alpha } $

Total moles of particles $=a(1-\alpha) + a\alpha + 2a\alpha = a(1+2\alpha ) = 1.2a $

$\therefore i=\frac {1.2a}{a} = 1.2 $ 

$\Delta T_b = i K_b m = 1.2 \times 0.5 \times 10 = 6 $

$\therefore B.P. = 106^\circ C $

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)