Skip to main content

Visit this link for 1 : 1 LIVE Classes.

Complete combustion of 750 g of an organic compound ....

Complete combustion of 750 g of an organic compound provides 420 g of $CO_2 $ and 210 g of $H_2 O $. The percentage composition of carbon and hydrogen in organic compound is 15.3 and _ _ _ _ respectively. (Round off to the nearest integer)

Solution

${n_{{H_2}O}} = \frac{{210}}{{18}} = \frac{{35}}{3}$

${n_H} = 2 \times {n_{{H_2}O}} = 2 \times \frac{{35}}{3} = \frac{{70}}{3}$

${m_H} = 1 \times \frac{{70}}{3}g$

% of H $ = \frac{{70 \times 100}}{{3 \times 750}} = 3.11\%  \approx 3\% $

Answer: 3

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)