Skip to main content

Visit this link for 1 : 1 LIVE Classes.

Consider an arithmetic series and a geometric series ....

Consider an arithmetic series and a geometric series having four initial terms from the set {11,8,21,16,26,32,4}. If the last terms of these series are the maximum possible four digit numbers, then the number of common terms in these two series is equal to _ _ _ _ .

Solution

Given set $ \equiv $ {11,8,21,16,26,32,4} $ \equiv $ {4,8,11,16,21,26,32}

GP's 1st 4 terms $\equiv $ 4, 8, 16, 32

AP's 1st 4 terms $\equiv $ 11, 16, 21, 26

The whole GP $\equiv $ 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192

AP has either 1 or 6 digit at unit's place.

The terms of GP having 1 or 6 at unit's place $\equiv $ 16, 256, 4096

16 is clearly present in AP.

If 256 is a term of AP, then 256 = 11 + (n - 1 ) . 5 for $n \in N$ which is true.

If 4096 is a term of AP, then 4096 = 11 + (n - 1) . 5 for $n \in N $ which is also true.

Hence, 3 terms.

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)