Skip to main content

Visit this link for 1 : 1 LIVE Classes.

Electric field of a plane electromagnetic wave ....

Electric field of a plane electromagnetic wave propagating through a non-magnetic medium is given by $E = 20\cos (2 \times {10^{10}}t - 200x)V/m$. The dielectric constant of the medium is equal to: (Take $\mu _r = 1 $)

(A) $\frac {1}{3}$
(B) 3
(C) 2
(D) 9

Solution

We have, $E = 20\cos \left[ {200\left( {\frac{{2 \times {{10}^{10}}}}{{200}}t - x} \right)} \right]V/m$

So, $v = \frac{{2 \times {{10}^{10}}}}{{200}} = 1 \times {10^8}m/s$

$\mu  = \sqrt {{\mu _r}{\epsilon_r}}  = \frac{c}{v} = \frac{{3 \times {{10}^8}}}{{1 \times {{10}^8}}} = 3$

$ \Rightarrow \sqrt {1 \times {\epsilon_r}}  = 3$

$ \Rightarrow {\epsilon_r} = 9$ = Dielectric Constant

Answer: (D)

Popular posts from this blog

${\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$

The range of the function $f(x) = {\log _{\sqrt 5 }}\left[ {3 + \cos \left( {\frac{{3\pi }}{4} + x} \right) + \cos \left( {\frac{\pi }{4} + x} \right) + \cos \left( {\frac{\pi }{4} - x} \right) - \cos \left( {\frac{{3\pi }}{4} - x} \right)} \right]$ is: (A) $[ - 2,2]$ (B) $\left[ {\frac{1}{{\sqrt 5 }},\sqrt 5 } \right]$ (C) $(0,\sqrt 5 )$ (D) $[ 0,2]$ Solution We have, $f(x) = {\log _{\sqrt 5 }}\left( {3 - 2\sin \frac{{3\pi }}{4}\sin x + 2\cos \frac{\pi }{4}\cos x} \right)$ $ \Rightarrow f(x) = {\log _{\sqrt 5 }}\left[ {3 + \sqrt 2 (\cos x - \sin x)} \right]$ Now, $ - \sqrt 2  \le \cos x - \sin x \le \sqrt 2 $ $\therefore - 2 \le \sqrt 2 (\cos x - \sin x) \le 2$ $\therefore 1 \le 3 + \sqrt 2 (\cos x - \sin x) \le 5$ $\therefore{\log _{\sqrt 5 }}1 \le {\log _{\sqrt 5 }}[3 + \sqrt 2 (\cos x - \sin x)] \le {\log _{\sqrt 5 }}5$ $ \Rightarrow 0 \le f(x) \le 2$ Answer: (D)